Разгорелся сыр бор как пишется

Калькулятор онлайн по действиям. порядок выполнения действий в выражениях без скобок и со скобками и вычислении значений выражений действия выполняются

Калькулятор онлайн по действиям. Порядок выполнения действий в выражениях без скобок и со скобками

И вычислении значений выражений действия выполняются в определенной очередности, иными словами, нужно соблюдать порядок выполнения действий .

В этой статье мы разберемся, какие действия следует выполнять сначала, а какие следом за ними. Начнем с самых простых случаев, когда выражение содержит лишь числа или переменные, соединенные знаками плюс, минус, умножить и разделить. Дальше разъясним, какого порядка выполнения действий следует придерживаться в выражениях со скобками. Наконец, рассмотрим, в какой последовательности выполняются действия в выражениях, содержащих степени, корни и другие функции.

Навигация по странице.

Сначала умножение и деление, затем сложение и вычитание

В школе дается следующее правило, определяющее порядок выполнения действий в выражениях без скобок :

  • действия выполняются по порядку слева направо,
  • причем сначала выполняется умножение и деление, а затем – сложение и вычитание.img1

Озвученное правило воспринимается достаточно естественно. Выполнение действий по порядку слева направо объясняется тем, что у нас принято вести записи слева направо. А то, что умножение и деление выполняется перед сложением и вычитанием объясняется смыслом, который в себе несут эти действия.

Рассмотрим несколько примеров применения этого правила. Для примеров будем брать простейшие числовые выражения, чтобы не отвлекаться на вычисления, а сосредоточиться именно на порядке выполнения действий.

Пример.

Выполните действия 7−3+6
.

Решение.

Исходное выражение не содержит скобок, а также оно не содержит умножения и деления. Поэтому нам следует выполнить все действия по порядку слева направо, то есть, сначала мы от 7
отнимаем 3
, получаем 4
, после чего к полученной разности 4
прибавляем 6
, получаем 10
.

Кратко решение можно записать так: 7−3+6=4+6=10
.

Ответ:

7−3+6=10
.

Пример.

Укажите порядок выполнения действий в выражении 6:2·8:3
.img2

Решение.

Чтобы ответить на вопрос задачи, обратимся к правилу, указывающему порядок выполнения действий в выражениях без скобок. В исходном выражении содержатся лишь действия умножения и деления, а согласно правилу, их нужно выполнять по порядку слева направо.

Ответ:

Сначала 6
делим на 2
, это частное умножаем на 8
, наконец, полученный результат делим на 3.

Пример.

Вычислите значение выражения 17−5·6:3−2+4:2
.

Решение.

Сначала определим, в каком порядке следует выполнять действия в исходном выражении. Оно содержит и умножение с делением, и сложение с вычитанием. Сначала слева направо нужно выполнить умножение и деление. Так 5
умножаем на 6
, получаем 30
, это число делим на 3
, получаем 10
. Теперь 4
делим на 2
, получаем 2
. Подставляем в исходное выражение вместо 5·6:3
найденное значение 10
, а вместо 4:2
— значение 2
, имеем 17−5·6:3−2+4:2=17−10−2+2
.

В полученном выражении уже нет умножения и деления, поэтому остается по порядку слева направо выполнить оставшиеся действия: 17−10−2+2=7−2+2=5+2=7
.img4

Ответ:

17−5·6:3−2+4:2=7
.

На первых порах, чтобы не перепутать порядок выполнения действий при вычислении значения выражения, удобно над знаками действий расставить цифры, соответствующие порядку их выполнения. Для предыдущего примера это выглядело бы так: .

Этого же порядка выполнения действий – сначала умножение и деление, затем сложение и вычитание — следует придерживаться и при работе с буквенными выражениями.

Действия первой и второй ступени

В некоторых учебниках по математике встречается разделение арифметических действий на действия первой и второй ступени. Разберемся с этим.

Определение.

Действиями первой ступени называют сложение и вычитание, а умножение и деление называют действиями второй ступени .

В этих терминах правило из предыдущего пункта, определяющее порядок выполнения действий, запишется так: если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем – действия первой ступени (сложение и вычитание).img3

Порядок выполнения арифметических действий в выражениях со скобками

Выражения часто содержат скобки, указывающие порядок выполнения действий . В этом случае правило, задающее порядок выполнения действий в выражениях со скобками , формулируется так: сначала выполняются действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем – сложение и вычитание.

Итак, выражения в скобках рассматриваются как составные части исходного выражения, и в них сохраняется уже известный нам порядок выполнения действий. Рассмотрим решения примеров для большей ясности.

Пример.

Выполните указанные действия 5+(7−2·3)·(6−4):2
.

Решение.

Выражение содержит скобки, поэтому сначала выполним действия в выражениях, заключенных в эти скобки. Начнем с выражения 7−2·3
. В нем нужно сначала выполнить умножение, и только потом вычитание, имеем 7−2·3=7−6=1
. Переходим ко второму выражению в скобках 6−4
. Здесь лишь одно действие – вычитание, выполняем его 6−4=2
.img14

Подставляем полученные значения в исходное выражение: 5+(7−2·3)·(6−4):2=5+1·2:2
. В полученном выражении сначала выполняем слева направо умножение и деление, затем – вычитание, получаем 5+1·2:2=5+2:2=5+1=6
. На этом все действия выполнены, мы придерживались такого порядка их выполнения: 5+(7−2·3)·(6−4):2
.

Запишем краткое решение: 5+(7−2·3)·(6−4):2=5+1·2:2=5+1=6
.

Ответ:

5+(7−2·3)·(6−4):2=6
.

Бывает, что выражение содержит скобки в скобках. Этого бояться не стоит, нужно лишь последовательно применять озвученное правило выполнения действий в выражениях со скобками. Покажем решение примера.

Пример.

Выполните действия в выражении 4+(3+1+4·(2+3))
.

Решение.

Это выражение со скобками, это означает, что выполнение действий нужно начинать с выражения в скобках, то есть, с 3+1+4·(2+3)
. Это выражение также содержит скобки, поэтому нужно сначала выполнить действия в них. Сделаем это: 2+3=5
. Подставив найденное значение, получаем 3+1+4·5
.slide 4 В этом выражении сначала выполняем умножение, затем – сложение, имеем 3+1+4·5=3+1+20=24
. Исходное значение, после подстановки этого значения, принимает вид 4+24
, и остается лишь закончить выполнение действий: 4+24=28
.

Ответ:

4+(3+1+4·(2+3))=28
.

Вообще, когда в выражении присутствуют скобки в скобках, то часто бывает удобно выполнение действий начинать с внутренних скобок и продвигаться к внешним.

Например, пусть нам нужно выполнить действия в выражении (4+(4+(4−6:2))−1)−1
. Сначала выполняем действия во внутренних скобках, так как 4−6:2=4−3=1
, то после этого исходное выражение примет вид (4+(4+1)−1)−1
. Опять выполняем действие во внутренних скобках, так как 4+1=5
, то приходим к следующему выражению (4+5−1)−1
. Опять выполняем действия в скобках: 4+5−1=8
, при этом приходим к разности 8−1
, которая равна 7
.

Бесплатная программа ЛовиОтвет — функциональный калькулятор для решения примеров и уравнений. В программе Лови Ответ происходит автоматическое решение математических примеров и уравнений с выводом действий и этапов их решения.D8pZ35BWkAEIRj3

Для чего нужна такая программа? Программа Лови Ответ — это своего рода математический решебник, который выводит ответ, с пошаговым решением выполненного задания.

Программа Лови Ответ будет интересна школьникам и их родителям. С помощью этой программы родители могут проверять домашние задания, которые выполнил учащийся. Также школьники и студенты могут решать примеры и уравнения при помощи этого математического калькулятора.

Взрослые, которые уже не помнят многого из школьного курса, а также учащиеся смогут при помощи данной программы, быстро решить математический пример любой степени сложности.

В программе ЛовиОтвет можно будет выполнять такие математические действия:

  • Совершать действия с натуральными числами.
  • Производить действия с дробями (десятичными, обыкновенными, смешанными).
  • В программе можно будет упрощать выражения, производить действия с многочленами.
  • Решать линейные и квадратные уравнения.

Примеры и уравнения будут решены в программе Лови Ответ пошагово, с последовательными действиями.img user file 5844521147243 3

Визуально, в окне программы, вы увидите решение примера или уравнения. Ответ и пошаговые действия для его решения, будут записаны на своеобразном тетрадном листе. Все этапы решения можно будет записывать в программе в столбик.

Скачать программу ЛовиОтвет можно с официального сайта производителя. Программа доступна для работы на компьютерах с операционной системой Windows. Есть версии программы для устройств на операционной системе Android, для Aplle устройств (iPad, iPhone/iPod), для мобильных телефонов (java, java-mini).

Лови Ответ скачать

После загрузки, вам можно будет установить программу на свой компьютер.

Установка программы Лови Ответ

Запустите процесс установки программы LoviOtvet на своем компьютере.

При установке программы будьте внимательны! Снимите флажки в тех пунктах, где вам предложат установить дополнительные программы, для того, чтобы не устанавливать на свой компьютер постороннее программное обеспечение.

По завершению установки программы на компьютер, будет открыто главное окно программы ЛовиОтвет.img user file 5937d587d778e 14

Обзор программы Лови Ответ

В верхней части окна программы расположены кнопки меню для управления программой.

С помощью кнопки меню «Правка» вы можете скопировать решение на свой компьютер, выбрав необходимый вариант копирования из контекстного меню. Из меню «Настройки» вы можете выбрать размер листа, клеток, очистить историю. Здесь вы можете изменить цвет отображения окна программы, передвинув в нужное место ползунок, по шкале цвета.

Под панелью меню расположено поле, в которое вводится задание.

В левой части окна расположены кнопки и переключатели для ввода данных. Здесь находится основная и дополнительная панель.

Дополнительную панель можно будет скрыть с помощью кнопки «Скрыть дополнительную панель». Отсюда, в случае необходимости, вы можете изменить размер листа и размер клеток в рабочей области.

Остальную часть окна программы занимает рабочая область, в которой будет отображено решение задания.

Для решения примера, с помощью соответствующих кнопок введите выражение, а затем нажмите на кнопку «Ответ».img5 Решение можно будет выводить в нескольких вариантах: стандартное решение, обыкновенные дроби, решение «в столбик».

После клика по треугольнику в крайней правой части поля, в котором вводится пример или уравнение, откроется дополнительное поле, в котором будут отображена история расчетов. В этом поле можно будет очистить историю расчетов.

Подробнее о том, как пользоваться математическим калькулятором, можно будет прочитать на официальном сайте производителя программы ЛовиОтвет, на странице сайта «Как пользоваться».

Лови Ответ онлайн

Производитель запустил онлайн версию программы ЛовиОтвет, которая доступна по такому адресу: https://calc.loviotvet.ru/ .

По заявлению производителя, версия Лови Ответ онлайн менее функциональна, чем программа, которая устанавливается на компьютер или мобильное устройство. Но, все равно, онлайн калькулятор может быть полезен в некоторых случаях, для выполнения решения поставленных задач.

Выводы статьи

Бесплатная программа Лови Ответ — математический решебник и калькулятор, который помогает школьникам, студентам и родителям выполнять или проверять решение примеров и уравнений любой степени сложности.009

ЛовиОтвет — программа для решения примеров и уравнений (видео)

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся. Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.img5

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис.img10 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления — это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.img5

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1. действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу.74352609 f537 4f4e 95e3 be2f78cbcfd2 В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания. Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие — умножение, второе — деление, третье — вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.img10

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие — деление, второе — умножение. Третье действие должно быть сложение, четвертое — вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — деление, третье — сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание.img5 Проверяем: первое действие — в скобках, второе — умножение, третье — вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого — вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.hello html m4dbf29db

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Festival.1september.ru ().
  2. Sosnovoborsk-soobchestva.ru ().
  3. Openclass.ru ().

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1.img11 умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Примеры с дробями – один из основных элементов математики. Существует много разных типов уравнений с дробями. Ниже приведена подробная инструкция по решению примеров такого типа.

Как решать примеры с дробями – общие правила

Для решения примеров с дробями любых типов, будь то сложение, вычитание, умножение или деление, необходимо знать основные правила:

  • Для того чтобы сложить дробные выражения с одинаковым знаменателем (знаменатель – число, находящееся в нижней части дроби, числитель – в верхней), нужно сложить их числители, а знаменатель оставить тем же.
  • Для того чтобы вычесть от одного дробного выражения второе (с одинаковым знаменателем), нужно вычесть их числители, а знаменатель оставить тем же.77879649377cc5054deadc762f3c28fb
  • Для того чтобы сложить или вычесть дробные выражения с разными знаменателями, нужно найти наименьший общий знаменатель.
  • Для того чтобы найти дробное произведение, нужно перемножить числители и знаменатели, при этом, если есть возможность, сократить.
  • Для того чтобы разделить дробь на дробь, нужно умножить первую дробь на перевернутую вторую.

Как решать примеры с дробями – практика

Правило 1, пример 1:

Вычислить 3/4 +1/4.

Согласно правилу 1, если у дробей двух (или больше) одинаковый знаменатель, нужно просто сложить их числители. Получим: 3/4 + 1/4 = 4/4. Если у дроби числитель и знаменатель одинаковы, такая дробь будет равна 1.

Ответ: 3/4 + 1/4 = 4/4 = 1.

Правило 2, пример 1:

Вычислить: 3/4 – 1/4

Пользуясь правилом номер 2, для решения этого уравнения нужно от 3 отнять 1, а знаменатель оставить тем же. Получаем 2/4. Так как два 2 и 4 можно сократить, сокращаем и получаем 1/2.

Ответ: 3/4 – 1/4 = 2/4 = 1/2.%D0%A1%D0%BD%D0%B8%D0%BC%D0%BE%D0%BA+%D1%8D%D0%BA%D1%80%D0%B0%D0%BD%D0%B0+2014 04 05+%D0%B2+6.13.52

Правило 3, Пример 1

Вычислить: 3/4 + 1/6

Решение: Пользуясь 3-м правилом, находим наименьший общий знаменатель. Наименьшим общим знаменателем называется такое число, которое делится на знаменатели всех дробных выражений примера. Таким образом, нам нужно найти такое минимальное число, которое будет делиться и на 4, и на 6. Таким числом является 12. Записываем в качестве знаменателя 12. 12 делим на знаменатель первой дроби, получаем 3, умножаем на 3, записываем в числителе 3*3 и знак +. 12 делим на знаменатель второй дроби, получаем 2, 2 умножаем на 1, записываем в числителе 2*1. Итак, получилась новая дробь со знаменателем, равным 12 и числителем, равным 3*3+2*1=11. 11/12.

Ответ: 11/12

Правило 3, Пример 2:

Вычислить 3/4 – 1/6. Этот пример очень схож с предыдущим. Проделываем все те же действия, но в числителе вместо знака +, пишем знак минус. Получаем: 3*3-2*1/12 = 9-2/12 = 7/12.

Ответ: 7/12

Правило 4, Пример 1:

Вычислить: 3/4 * 1/4

Пользуясь четвертым правилом, умножаем знаменатель первой дроби на знаменатель второй и числитель первой дроби на числитель второй.147051298 Marchenko I Matematika 14 klassy v skhemakh i t 077 3*1/4*4 = 3/16.

Ответ: 3/16

Правило 4, Пример 2:

Вычислить 2/5 * 10/4.

Данную дробь можно сократить. В случае произведения сокращаются числитель первой дроби и знаменатель второй и числитель второй дроби и знаменатель первой.

2 сокращается с 4. 10 сокращается с 5. получаем 1 * 2/2 = 1*1 = 1.

Ответ: 2/5 * 10/4 = 1

Правило 5, Пример 1:

Вычислить: 3/4: 5/6

Пользуясь 5-м правилом, получим: 3/4: 5/6 = 3/4 * 6/5. Сокращаем дробь по принципу предыдущего примера и получаем 9/10.

Ответ: 9/10.

Как решать примеры с дробями – дробные уравнения

Дробными уравнениями называются примеры, где в знаменателе есть неизвестное. Для того чтобы решить такое уравнение нужно пользоваться определенными правилами.

Рассмотрим пример:

Решить уравнение 15/3x+5 = 3

Вспомним, нельзя делить на ноль, т.е. значение знаменателя не должно равняться нулю. При решении таких примеров, это нужно обязательно указывать.screen13 Для этого существует ОДЗ (область допустимых значений).

Таким образом, 3x+5 ≠ 0.
Отсюда: 3x ≠ 5.
x ≠ 5/3

При x = 5/3 уравнение просто не имеет решения.

Указав ОДЗ, наилучшим способом решить данное уравнение будет избавиться от дробей. Для это сначала представим все не дробные значения в виде дроби, в данном случае число 3. Получим: 15/(3x+5) = 3/1. Чтобы избавиться от дроби нужно умножить каждую из них на наименьший общий знаменатель. В данном случае таковым будет (3x+5)*1. Последовательность действий:

  1. Умножаем 15/(3x+5) на (3x+5)*1 = 15*(3x+5).
  2. Раскрываем скобки: 15*(3x+5) = 45x + 75.
  3. То же самое проделываем с правой частью уравнения: 3*(3x+5) = 9x + 15.
  4. Приравниваем левую и правую часть: 45x + 75 = 9x +15
  5. Переносим иксы влево, числа вправо: 36x = – 50
  6. Находим x: x = -50/36.
  7. Сокращаем: -50/36 = -25/18

Ответ: ОДЗ x ≠ 5/3 . x = -25/18.

Как решать примеры с дробями – дробные неравенства

Дробные неравенства по типу (3x-5)/(2-x)≥0 решаются при помощи числовой оси.img6 Рассмотрим данный пример.

Последовательность действий:

  • Приравниваем числитель и знаменатель к нулю: 1. 3x-5=0 => 3x=5 => x=5/3
    2. 2-x=0 => x=2
  • Чертим числовую ось, расписывая на ней получившиеся значения.
  • Под значение рисуем кружок. Кружок бывает двух типов – заполненный и пустой. Заполненный кружок означает, что данное значение входит в ареал решений. Пустой круг говорит о том, что данное значение не входит в ареал решений.
  • Так как знаменатель не может быть равным нулю, под 2-ой будет пустой круг.
  • Чтобы определить знаки, подставляем в уравнение любое число больше двух, например 3. (3*3-5)/(2-3)= -4. значение отрицательное, значит над областью после двойки пишем минус. Затем подставляем вместо икса любое значение интервала от 5/3 до 2, например 1. Значение опять отрицательное. Пишем минус. То же самое повторяем с областью, находящейся до 5/3. Подставляем любое число, меньшее чем 5/3, например 1. Опять минус.img4
  • Так как нас интересуют значения икса, при котором выражение будет больше или равно 0, а таких значений нет (везде минусы), это неравенство не имеет решения, то есть x = Ø (пустое множество).

Ответ: x = Ø

Данный калькулятор пытается оценить сложность вычисления без калькулятора (на листочке) задач с использованием арифметических операций сложения, вычитания, умножения и деления.
Калькулятор определяет количество элементарных операций в примере, дает условную сложность выраженную в миллисекундах, требуемых для вычисления примера. Сложность складывается из суммы элементарных операций, помноженных на коэффициент сложности (время в миллисекундах, требуемое для выполнение операции). Расшифровка элементарных операций дается в таблице в нижней части калькулятора.

Результат вычисления

Количество элементарных операций

Сложность (время вычисления)

Расшифровка операций с указанием сложности.
++ сложность 200, увеличение на единицу, например, при умножении 2003000 — будет одно умножение 2 3 и 5 раз выполнится подсчет нулей
+ сложность 500, элементарное сложение например 5+4
сложность 500, элементарное вычитание, например 3-2
* сложность 1000, элементарное умножение, например 2*2
/ сложность 1000, деление — операция деления сводится к последовательном выполнении операций умножения и вычитания, при этом мы прикидываем всякий раз какой множитель необходимо выбрать, чтобы произведение получилось чуть меньше или равно текущего делимого.img11 Эта элементарная операция подсчитывается в данной колонке. Необходимые умножения и вычитания подсчитываются дополнительно.
0+ сложность 100, сложение с нулем — частный случай выделен отдельно, так как это более простая операция чем сложение.
0 сложность 100, подстановка нулей
°+ сложность 700, сложение с переносом единицы, например 16+7 — содержит две операции — элементарное сложение и перенос единицы в следующий разряд.
=0 сложность 200, сокращение — операции вычитания равных величин, например 100-100
°- сложность 600, заем единицы при вычитании, например при вычитании 11-9 будет выполнен один заем и одна операция вычитания.
** сложность 400, повторное умножение. часто случается, что при выполнении элементарных (и не только) операций умножения выполняются одни и те же операции. Например 2533 будет содержать два элементарных умножения и один повтор, мы просто можем переписать результат умножения 25 3 еще один раз.88d0bac4be237e0aebbca4360848534e78
*0 сложность 100, частный случай умножения на ноль
*1 сложность 200, частный случай умножения на единицу
°* сложность 700, перенос при умножении, например 234 — два элементарных умножения плюс один перенос (1) при умножении 3 4
+- сложность 300, смена знака
сложность 500, перестановка вычитаемых, выполняется если мы пытаемся вычесть из меньшего большее
. сложность 500, операций с плавающей точкой

Рассмотрим вычисление сложности на примере (4567+987-8354)*32/25:
Пример содержит все четыре арифметических операции.

Сначала выполняется сложение 4567+987=5554

Как видим, в этом примере имеется три элементарных сложения: 7+7, 6+8, 5+9, при выполнении каждого из которых осуществляется перенос единицы в старший разряд.

Затем вычитание 5554-8354=-2800

Так как из меньшего вычитается большее число, результат получается отрицательным, перед вычитанием выполняется перестановка операндов.img19 Первые два разряда 5,4 сокращаются, затем при вычислении 3-5 осуществляется элементарное вычитание с займом единицы, затем просто вычитание 8-1-5=2.

Третьим действием выполняем умножение -2800*32=-89600

Так как первый множитель заканчивается нулями, выполняем подсчет их количества, чтобы в конце умножения приписать нули к результату. Затем умножаем 2832. При умножении на 3 8 и 28 выполняется перенос в след. разряд. 2 2 и 2*3 — просто элементарные умножения. Итого 4 элементарных умножения, 2 переноса, 2 подсчета.

Последнее действие — деление -89600/25=-3584

На каждом шаге деления осуществляется подбор множителя таким образом, чтобы произведение его на делитель было близко к числу, составляемому первыми разрядами текущего остатка от деления. Эта операция засчитывается как элементарное деление, после чего выполняется умножение и вычитание, сложность которых рассчитывается по аналогии с предыдущими шагами.
В частности при делении первых разрядов (86) на 25 выбираем множитель = 3.img6 Далее производится умножение 25*3-75, далее вычитание 89-75=14.
Итого при вычислении 89600/25 имеем: 4 деления и 4 вычитания, 8 произведений, 3 сокращения, два умножения с переносом, при умножении с переносом осуществляется одно сложение.

В конечном итоге в ходе вычисления всего примера произведено 52 элементарные операции — с учетом обозначенных весовых коэффициентов, общая сложность составляет 28500. Таким образом для решения данного примера понадобится примерно полминуты (28.5 секунды).

P.S. Все временные оценки и сам алгоритм вычисления сложности сделаны на основе субъективных предположений автора, комментарии и замечания приветствуются.

Примеры по математике со скобками

Выполнение тех или иных операций предполагает определённый порядок действий.

42 + 1 = 3

Если производить действия в порядке их записи, четыре минус два плюс один, результат будет равен трём.img25 Если же вначале сложить 2 и 1 и вычесть данную сумму из 4, то получится цифра 1.

Чтобы указать, в каком порядке нужно выполнять действия применяют скобки.

Действия, заключенные в скобки, выполняются раньше других.

Пример:

(42) + 1 = 3

5 – (3 + 1) = 1

(3 + 4) × 5 = 7 × 5 = 35

4 + (4 × 5) = 4 + 20 = 24

Скобки не ставятся в тех случаях если:

1. действия сложения и вычитания, исполняются в последовательности, как они записаны:

вместо (62) + 1 = 5 пишут 62 + 1 = 5

2.img5 внутри скобок совершаются операции умножения или деления:

вместо 2 + (2 × 8) = 18 пишут 2 + 2 × 8 = 18

При расчёте таких выражений, которые либо вовсе не содержат разделительных скобок, либо имеют такие скобки, внутри которых не содержится других скобок, следует производить действия в следующем порядке:

1. вначале выполняются операции с цифрами заключенными в скобки, при этом действия умножения и деления делаются в порядке их следования, но ранее, чем сложение и вычитание.

2. Затем, исполняются остающиеся действия, причем опять умножение и деление производятся в порядке их следования, но ранее сложения и вычитания.

Пример:

2 × 53 × 3

сначала выполняется умножения

2 × 5 = 10

3 × 3 = 9

затем выполняется вычитание

109 = 1

Пример:

22 + 16 : 44 × (172 × 7 + 3) + 7 × (3 + 4)

выполнение действий в скобках:

172 × 7 + 4 = 1714 + 3 = 6

3 + 4 = 7

выполнение остающихся действий:

22 + 16 : 44 × 6 + 7 × 7 = 22 + 424 + 49 = 51

Зачастую для указания порядка действий, необходимо применять дополнительные скобки.img user file 544f75166ba4b 12

Тогда, кроме простых круглых скобок, используют скобки иной формы:

[ ]квадратные скобки

{ }фигурные скобки

Вычисление этих выражений реализуется в следующем порядке:

Вначале операции вычисления производятся внутри всех круглых скобок

затем – вычисления внутри всех квадратных скобок

далее – вычисления внутри фигурных скобок

после выполняются остающиеся действия

Пример:

5 + 2 × [144 × (75) ] + 36 : (122 × 3)

выполнение действий в круглых скобках:

75 = 2

122 × 3 = 126 = 6

действия в квадратных скобках:

144 × 2 = 6

выполнение остающихся действий:

5 + 2 × 6 + 36 : 6 = 5 + 12 + 6 = 23

Пример:

{100 – [40 – (3525)]} × 2

Порядок действий:

3525 = 10

4010 = 30

100 30 = 70

70 × 2 = 140

Приоритет — Python

Посмотрите внимательно на выражение 2 + 2 * 2 и посчитайте в уме ответ.001977 00e

Правильный ответ: 6.

Если у вас получилось 8, то этот урок для вас. В школьной математике мы изучали понятие «приоритет операции». Приоритет определяет то, в какой последовательности должны выполняться операции. Например, умножение и деление имеют больший приоритет, чем сложение и вычитание, а приоритет возведения в степень выше всех остальных арифметических операций: 2 ** 3 * 2 вычислится в 16.

Но нередко вычисления должны происходить в порядке, отличном от стандартного приоритета. В сложных ситуациях приоритет можно (и нужно) задавать круглыми скобками, точно так же, как в школе, например: (2 + 2) * 2.

Скобки можно ставить вокруг любой операции. Они могут вкладываться друг в друга сколько угодно раз. Вот пара примеров:

print(3 ** (4 - 2))  # => 9
print(7 * 3 + (4 / 2) - (8 + (2 - 1)))  # => 14

Главное при этом соблюдать парность, то есть закрывать скобки в правильном порядке.hello html a05b828 Это, кстати, часто становится причиной ошибок не только у новичков, но и у опытных программистов. Для удобства ставьте сразу открывающую и закрывающую скобку, а потом пишите внутреннюю часть. Редактор на нашем сайте (и большинство других редакторов кода) делают это автоматически: вы пишете (, а редактор сразу добавляет ). Это касается и других парных символов, например, кавычек. О них — в будущих уроках.

Иногда выражение сложно воспринимать визуально. Тогда можно расставить скобки, не повлияв на приоритет. Например, задание из прошлого урока можно сделать немного понятнее, если расставить скобки.

Было:

print(8 / 2 + 5 - -3 / 2)  # => 10.5

Стало:

print(((8 / 2) + 5) - (-3 / 2))  # => 10.5

Запомните: код пишется для людей, потому что код будут читать люди, а машины будут только исполнять его. Для машин код — или корректный, или не корректный, для них нет «более» понятного или «менее» понятного кода.img6

Задание

Дано вычисление 70 * 3 + 4 / 8 + 2.

Расставьте скобки так, чтобы оба сложения (3 + 4) и (8 + 2) высчитывались в первую очередь. Выведите на экран результат.


Нашли ошибку? Есть что добавить? Пулреквесты приветствуются https://github.com/hexlet-basics

Первое действие сложение. Примеры на порядок действий

Числовые и буквенные выражения могут содержать знаки различных арифметических действий. При преобразовании выражений и вычислении значений выражений действия выполняются в определенной очередности, так как существует строгий порядок выполнения математических действий

Сначала умножение и деление, затем сложение и вычитание

Порядок выполения действий в выражениях без скобок:

— действия выполняются по порядку слева направо,

— причем сначала выполняется умножение и деление, а затем – сложение и вычитание .

1.d8d0d78faef6c0b265a7ee9e54216e55d42ea24f Рассмотрим пример: выполните действия 17−3+6

Исходное выражение не содержит умножения и деления и не содержит скобок. Поэтому нам следует выполнить все действия по порядку слева направо
, то есть, сначала мы от 17 отнимаем 3, получаем 14, после чего к полученной разности 14 прибавляем 6, получаем 20.

Кратко решение можно записать так: 17 − 3 + 6 = 14 + 6 = 20

2. Вычислите значение выражения 17 − 5 · 6: 3 − 2 + 4: 2

Сначала определим, в каком порядке следует выполнять действия в выражении. Оно содержит и умножение с делением, и сложение с вычитанием. Сначала слева направо нужно выполнить умножение и деление
.

4: 2 теперь 4 делим на 2, получаем 2.

Подставляем в исходное выражение вместо 5 · 6: 3 найденное значение 10, а вместо 4: 2 — значение 2, получаем следующее выражение 17 − 5 · 6: 3
− 2 + 4: 2
= 17 − 10
− 2+ 2
.

В полученном выражении уже нет умножения и деления, поэтому остается по порядку слева направо
выполнить оставшиеся действия: 17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7.img7

Действия первой и второй ступени

Для удобства принятия решения о последовательности выполнения действий их разделили на две ступени:

первая ступень — сложение и вычитание,

вторая ступень — умножение и деление.

Если выражение не содержит скобок, то по порядку слева направо сначала выполняются действия второй ступени (умножение и деление), затем – действия первой ступени (сложение и вычитание)

Порядок выполнения арифметических действий в выражениях со скобками

Правило, задающее порядок выполнения действий в выражениях со скобками, формулируется так: сначала выполняются действия в скобках, при этом также по порядку слева направо выполняется умножение и деление, затем – сложение и вычитание.

Рассмотрим пример: 99: (45 – 39 + 5) – 25: 5

Порядок вычисления такой. Сначала выполним действия в скобках:

45 – 39 = 6 ; 6 + 5 = 11 ,

затем действия второй ступени

Для правильного вычисления выражений, в которых нужно произвести более одного действия, нужно знать порядок выполнения арифметических действий.2100 3 15 7 638 Арифметические действия в выражении без скобок условились выполнять в следующем порядке:

  1. Если в выражении присутствует возведение в степень, то сначала выполняется это действие в порядке следования, т. е. слева направо.
  2. Затем (при наличии в выражении) выполняются действия умножения и деления в порядке их следования.
  3. Последними (при наличии в выражении) выполняются действия сложения и вычитания в порядке их следования.

В качестве примера рассмотрим следующее выражение:

Сначала необходимо выполнить возведение в степень (число 4 возвести в квадрат и число 2 в куб):

3 · 16 — 8: 2 + 20

Затем выполняются умножение и деление (3 умножить на 16 и 8 разделить на 2):

И в самом конце, выполняются вычитание и сложение (из 48 вычесть 4 и к результату прибавить 20):

48 — 4 + 20 = 44 + 20 = 64

Действия первой и второй ступени

Арифметические действия делятся на действия первой и второй ступени. Сложение и вычитание называются действиями первой ступени , умножение и деление — действиями второй ступени .slide 2

Если выражение содержит действия только одной ступени и в нём нет скобок, то действия выполняются в порядке их следования слева направо.

Пример 1.

15 + 17 — 20 + 8 — 12

Решение. Данное выражение содержит действия только одной ступени — первой (сложение и вычитание). Надо определить порядок действий и выполнить их.

Ответ: 42.

Если выражение содержит действия обеих ступеней, то первыми выполняются действия второй ступени, в порядке их следования (слева направо), а затем действия первой ступени.

Пример. Вычислить значение выражения:

24: 3 + 5 · 2 — 17

Решение. Данное выражение содержит четыре действия: два первой ступени и два второй. Определим порядок их выполнения: согласно правилу первым действием будет деление, вторым — умножение, третьим — сложение, а четвёртым — вычитание.

Теперь приступим к вычислению.

Начальная школа подходит к концу, скоро ребёнок шагнёт в углубленный мир математики.slide5 l Но уже в этот период школьник сталкивается с трудностями науки. Выполняя простое задание, ребёнок путается, теряется, что в результате приводит к отрицательной отметке за выполненную работу. Чтобы избежать подобных неприятностей, нужно при решении примеров, уметь ориентироваться в порядке, по которому нужно решать пример. Не верно распределив действия, ребёнок не правильно выполняет задание. В статье раскрываются основные правила решения примеров, содержащих в себе весь спектр математических вычислений, включая скобки. Порядок действий в математике 4 класс правила и примеры.

Перед выполнением задания попросите своё чадо пронумеровать действия, которые он собирается выполнить. Если возникли затруднения – помогите.

Некоторые правила, которые необходимо соблюдать при решении примеров без скобок:

Если в задании необходимо выполнить ряд действий, нужно сначала выполнить деление или умножение, затем . Все действия выполняются по ходу письма. В противном случае, результат решения будет не верным.slide 5

Если в примере требуется выполнить , выполняем по порядку, слева направо.

27-5+15=37 (при решении примера руководствуемся правилом. Сначала выполняем вычитание, затем – сложение).

Научите ребёнка всегда планировать и нумеровать выполняемые действия.

Ответы на каждое решённое действие записываются над примером. Так ребёнку гораздо легче будет ориентироваться в действиях.

Рассмотрим ещё один вариант, где необходимо распределить действия по порядку:

Как видим, при решении соблюдено правило, сначала ищем произведение, после — разность.

Это простые примеры, при решении которых, необходима внимательность. Многие дети впадают в ступор при виде задания, в котором присутствует не только умножение и деление, но и скобки. У школьника, не знающего порядок выполнения действий, возникают вопросы, которые мешают выполнить задание.

Как говорилось в правиле, сначала найдём произведение или частное, а потом всё остальное. Но тут же есть скобки! Как поступить в этом случае?

Решение примеров со скобками

Разберём конкретный пример:

  • При выполнении данного задания, сначала найдём значение выражения, заключённого в скобки.img12
  • Начать следует с умножения, далее – сложение.
  • После того, как выражение в скобках решено, приступаем к действиям вне их.
  • По правилам порядка действий, следующим шагом будет умножение.
  • Завершающим этапом станет .

Как видим на наглядном примере, все действия пронумерованы. Для закрепления темы предложите ребёнку решить самостоятельно несколько примеров:

Порядок, по которому следует вычислять значение выражения уже расставлен. Ребёнку останется только выполнить непосредственно решение.

Усложним задачу. Пусть ребёнок найдёт значение выражений самостоятельно.

7*3-5*4+(20-19) 14+2*3-(13-9)
17+2*5+(28-2) 5*3+15-(2-1*2)
24-3*2-(56-4*3) 14+12-3*(21-7)

Приучите ребёнка решать все задания в черновом варианте. В таком случае, у школьника будет возможность исправить не верное решение или помарки. В рабочей тетради исправления не допустимы. Выполняя самостоятельно задания, дети видят свои ошибки.img6

Родители, в свою очередь, должны обратить внимание на ошибки, помочь ребёнку разобраться и исправить их. Не стоит нагружать мозг школьника большими объёмами заданий. Такими действиями вы отобьёте стремление ребёнка к знаниям. Во всём должно быть чувство меры.

Делайте перерыв. Ребёнок должен отвлекаться и отдыхать от занятий. Главное помнить, что не все обладают математическим складом ума. Может из вашего ребёнка вырастет знаменитый философ.

На данном уроке подробно рассмотрен порядок выполнения арифметических действий в выражениях без скобок и со скобками. Учащимся предоставляется возможность в ходе выполнения заданий определить, зависит ли значение выражений от порядка выполнения арифметических действий, узнать отличается ли порядок арифметических действий в выражениях без скобок и со скобками, потренироваться в применении изученного правила, найти и исправить ошибки, допущенные при определении порядка действий.

В жизни мы постоянно выполняем какие-либо действия: гуляем, учимся, читаем, пишем, считаем, улыбаемся, ссоримся и миримся.img3 Эти действия мы выполняем в разном порядке. Иногда их можно поменять местами, а иногда нет. Например, собираясь утром в школу, можно сначала сделать зарядку, затем заправить постель, а можно наоборот. Но нельзя сначала уйти в школу, а потом надеть одежду.

А в математике обязательно ли выполнять арифметические действия в определенном порядке?

Давайте проверим

Сравним выражения:
8-3+4 и 8-3+4

Видим, что оба выражения совершенно одинаковы.

Выполним действия в одном выражения слева направо, а в другом справа налево. Числами можно проставить порядок выполнения действий (рис. 1).

Рис. 1. Порядок действий

В первом выражении мы сначала выполним действие вычитания, а затем к результату прибавим число 4.

Во втором выражении сначала найдем значение суммы, а потом из 8 вычтем полученный результат 7.

Видим, что значения выражений получаются разные.

Сделаем вывод: порядок выполнения арифметических действий менять нельзя .img17

Узнаем правило выполнения арифметических действий в выражениях без скобок.

Если в выражение без скобок входят только сложение и вычитание или только умножение и деление, то действия выполняют в том порядке, в каком они написаны.

Потренируемся.

Рассмотрим выражение

В этом выражении имеются только действия сложения и вычитания. Эти действия называют действиями первой ступени .

Выполняем действия слева направо по порядку (рис. 2).

Рис. 2. Порядок действий

Рассмотрим второе выражение

В этом выражении имеются только действия умножения и деления — это действия второй ступени.

Выполняем действия слева направо по порядку (рис. 3).

Рис. 3. Порядок действий

В каком порядке выполняются арифметические действия, если в выражении имеются не только действия сложения и вычитания, но и умножения и деления?

Если в выражение без скобок входят не только действия сложения и вычитания, но и умножения и деления, или оба этих действия, то сначала выполняют по порядку (слева направо) умножение и деление, а затем сложение и вычитание.img9

Рассмотрим выражение.

Рассуждаем так. В этом выражении имеются действия сложения и вычитания, умножения и деления. Действуем по правилу. Сначала выполняем по порядку (слева направо) умножение и деление, а затем сложение и вычитание. Расставим порядок действий.

Вычислим значение выражения.

18:2-2*3+12:3=9-6+4=3+4=7

В каком порядке выполняются арифметические действия, если в выражении имеются скобки?

Если в выражении имеются скобки, то сначала вычисляют значение выражений в скобках.

Рассмотрим выражение.

30 + 6 * (13 — 9)

Мы видим, что в этом выражении имеется действие в скобках, значит, это действие выполним первым, затем по порядку умножение и сложение. Расставим порядок действий.

30 + 6 * (13 — 9)

Вычислим значение выражения.

30+6*(13-9)=30+6*4=30+24=54

Как нужно рассуждать, чтобы правильно установить порядок арифметических действий в числовом выражении?

Прежде чем приступить к вычислениям, надо рассмотреть выражение (выяснить, есть ли в нём скобки, какие действия в нём имеются) и только после этого выполнять действия в следующем порядке:

1.img12 действия, записанные в скобках;

2. умножение и деление;

3. сложение и вычитание.

Схема поможет запомнить это несложное правило (рис. 4).

Рис. 4. Порядок действий

Потренируемся.

Рассмотрим выражения, установим порядок действий и выполним вычисления.

43 — (20 — 7) +15

32 + 9 * (19 — 16)

Будем действовать по правилу. В выражении 43 — (20 — 7) +15 имеются действия в скобках, а также действия сложения и вычитания. Установим порядок действий. Первым действием выполним действие в скобках, а затем по порядку слева направо вычитание и сложение.

43 — (20 — 7) +15 =43 — 13 +15 = 30 + 15 = 45

В выражении 32 + 9 * (19 — 16) имеются действия в скобках, а также действия умножения и сложения. По правилу первым выполним действие в скобках, затем умножение (число 9 умножаем на результат, полученный при вычитании) и сложение.

32 + 9 * (19 — 16) =32 + 9 * 3 = 32 + 27 = 59

В выражении 2*9-18:3 отсутствуют скобки, зато имеются действия умножения, деления и вычитания.56 8dnBhGM0 Действуем по правилу. Сначала выполним слева направо умножение и деление, а затем от результата, полученного при умножении, вычтем результат, полученный при делении. То есть первое действие — умножение, второе — деление, третье — вычитание.

2*9-18:3=18-6=12

Узнаем, правильно ли определен порядок действий в следующих выражениях.

37 + 9 — 6: 2 * 3 =

18: (11 — 5) + 47=

7 * 3 — (16 + 4)=

Рассуждаем так.

37 + 9 — 6: 2 * 3 =

В этом выражении скобки отсутствуют, значит, сначала выполняем слева направо умножение или деление, затем сложение или вычитание. В данном выражении первое действие — деление, второе — умножение. Третье действие должно быть сложение, четвертое — вычитание. Вывод: порядок действий определен верно.

Найдем значение данного выражения.

37+9-6:2*3 =37+9-3*3=37+9-9=46-9=37

Продолжаем рассуждать.

Во втором выражении имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание.img2 Проверяем: первое действие — в скобках, второе — деление, третье — сложение. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

18:(11-5)+47=18:6+47=3+47=50

В этом выражении также имеются скобки, значит, сначала выполняем действие в скобках, затем слева направо умножение или деление, сложение или вычитание. Проверяем: первое действие — в скобках, второе — умножение, третье — вычитание. Вывод: порядок действий определен неверно. Исправим ошибки, найдем значение выражения.

7*3-(16+4)=7*3-20=21-20=1

Выполним задание.

Расставим порядок действий в выражении, используя изученное правило (рис. 5).

Рис. 5. Порядок действий

Мы не видим числовых значений, поэтому не сможем найти значение выражений, однако потренируемся применять изученное правило.

Действуем по алгоритму.

В первом выражении имеются скобки, значит, первое действие в скобках. Затем слева направо умножение и деление, потом слева направо вычитание и сложение.5931b04db261ff3870377a32

Во втором выражении также имеются скобки, значит, первое действие выполняем в скобках. После этого слева направо умножение и деление, после этого — вычитание.

Проверим себя (рис. 6).

Рис. 6. Порядок действий

Сегодня на уроке мы познакомились с правилом порядка выполнения действий в выражениях без скобок и со скобками.

Список литературы

  1. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 1. — М.: «Просвещение», 2012.
  2. М.И. Моро, М.А. Бантова и др. Математика: Учебник. 3 класс: в 2-х частях, часть 2. — М.: «Просвещение», 2012.
  3. М.И. Моро. Уроки математики: Методические рекомендации для учителя. 3 класс. — М.: Просвещение, 2012.
  4. Нормативно-правовой документ. Контроль и оценка результатов обучения. — М.: «Просвещение», 2011.
  5. «Школа России»: Программы для начальной школы. — М.: «Просвещение», 2011.
  6. С.И. Волкова. Математика: Проверочные работы. 3 класс. — М.: Просвещение, 2012.img8
  7. В.Н. Рудницкая. Тесты. — М.: «Экзамен», 2012.
  1. Festival.1september.ru ().
  2. Sosnovoborsk-soobchestva.ru ().
  3. Openclass.ru ().

Домашнее задание

1. Определи порядок действий в данных выражениях. Найди значение выражений.

2. Определи, в каком выражении такой порядок выполнения действий:

1. умножение; 2. деление;. 3. сложение; 4. вычитание; 5. сложение. Найди значение данного выражения.

3. Составь три выражения, в которых такой порядок выполнения действий:

1. умножение; 2. сложение; 3. вычитание

1. сложение; 2. вычитание; 3. сложение

1. умножение; 2. деление; 3. сложение

Найди значение этих выражений.

Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий.img11 Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

Yandex.RTB R-A-339285-1

В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

Определение 1

В случае выражений без скобок порядок действий определяется однозначно:

  1. Все действия выполняются слева направо.
  2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.img4

Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

Пример 1

Условие: вычислите, сколько будет 7 − 3 + 6 .

Решение

В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

7 − 3 + 6 = 4 + 6 = 10

Ответ: 7 − 3 + 6 = 10 .

Пример 2

Условие: в каком порядке нужно выполнять вычисления в выражении 6: 2 · 8: 3 ?

Решение

Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.img5

Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

Пример 3

Условие: подсчитайте, сколько будет 17 − 5 · 6: 3 − 2 + 4: 2 .

Решение

Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30 , потом 30 разделить на 3 и получить 10 . После этого делим 4 на 2 , это 2 . Подставим найденные значения в исходное выражение:

17 − 5 · 6: 3 − 2 + 4: 2 = 17 − 10 − 2 + 2

Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

Ответ: 17 − 5 · 6: 3 − 2 + 4: 2 = 7 .440870ec564a0fbca4c7804f285e2c2f

Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

Что такое действия первой и второй ступени

Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

Определение 2

В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

Порядок вычислений в выражениях со скобками

Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий.%D0%A1%D0%BB%D0%B0%D0%B9%D0%B424 В таком случае нужное правило можно записать так:

Определение 3

Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

Пример 4

Условие: вычислите, сколько будет 5 + (7 − 2 · 3) · (6 − 4) : 2 .

Решение

В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7:

7 − 2 · 3 = 7 − 6 = 1

Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

5 + (7 − 2 · 3) · (6 − 4) : 2 = 5 + 1 · 2: 2

Начнем с умножения и деления, потом выполним вычитание и получим:

5 + 1 · 2: 2 = 5 + 2: 2 = 5 + 1 = 6

На этом вычисления можно закончить.img1

Ответ: 5 + (7 − 2 · 3) · (6 − 4) : 2 = 6 .

Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

Пример 5

Условие: вычислите, сколько будет 4 + (3 + 1 + 4 · (2 + 3)) .

Решение

У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · (2 + 3) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножить, а потом сложить: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

Ответ: 4 + (3 + 1 + 4 · (2 + 3)) = 28 .

Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

Допустим, нам надо найти, сколько будет (4 + (4 + (4 − 6: 2)) − 1) − 1 .screen18 Начинаем с выражения во внутренних скобках. Поскольку 4 − 6: 2 = 4 − 3 = 1 , исходное выражение можно записать как (4 + (4 + 1) − 1) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению (4 + 5 − 1) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 — 1 , результатом которой будет 7 .

Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

Разберем пример такого вычисления.

Пример 6

Условие: найдите, сколько будет (3 + 1) · 2 + 6 2: 3 − 7 .

Решение

У нас есть выражение со степенью, значение которого надо найти в первую очередь.img phpwyn34r Povtorenie kursa 5 klassa 2 Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид (3 + 1) · 2 + 36: 3 − 7 .

(3 + 1) · 2 + 36: 3 − 7 = 4 · 2 + 36: 3 − 7 = 8 + 12 − 7 = 13

Ответ: (3 + 1) · 2 + 6 2: 3 − 7 = 13 .

В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Знакомство со сложными формулами в Excel

В этом уроке мы познакомимся с понятием Сложная формула в Excel, а также разберем порядок выполнения действий при решении таких формул. Представленная информация является базовой и предназначена в первую очередь для начинающих пользователей Microsoft Excel.

Простая формула – это математическое выражение с одним оператором, такое как 7+9.img12 2=4.

Деление

Далее мы выполним все операции умножения и деления, в порядке следования слева направо. Поскольку деление встречается раньше умножения, то деление выполняется первым: 3/4=0,75.

Умножение

Теперь мы выполним оставшуюся операцию умножения: 0,75*4=3.

Сложение

Далее мы выполним все операции сложения и вычитания, в порядке следования слева направо. Поскольку сложение встречается раньше вычитания, то сложение выполняется первым: 10+3=13.

Вычитание

В заключение остается последнее действие – вычитание: 13-1=12.

В итоге мы получили ответ: 12.

Точно такой же результат вы получите, если введете эту формулу в Excel.

Как видите, в этом нет ничего сложного!

Оцените качество статьи. Нам важно ваше мнение:

Почему умножение и деление «приоритетнее» сложения и вычитания

https://a-rodionova.000e18 00b livejournal.com/67729.html#t592017

Месяц назад на Рамблере появилась сообщение о том, что появившийся в твиттере пример 8:2(2+2) (https://twitter.com/pjmdolI/status/1155599063242485762 ) пользователи решают по разному: одни делят 8 на 2 и умножают на (2+2), ответ: 16, другие делят 8 на произведение 2(2+2), ответ — 1. Первых — большинство. Правильный ответ — 1. Я хотела написать пост на эту тему. Пока помещаю отрывок из него, где объясняю правила порядка действий.

Почему умножение и деление «приоритетнее» сложения и вычитания

Пусть выражением 20+10 =30 записано решение задачи. Слагаемыми являются известные числа, известные по условиям задачи, типа такой: вчера выкопали 20 кг моркови, сегодня — 10. Какой урожай моркови?

Теперь представим, что слагаемые неизвестны, но по условию задачи известно, что 20 — это 10*2, а 10 — это 30:3. Так и записываем сумму: 10*2+30:3=? Нам надо получить сумму двух неизвестных чисел, чтобы подсчитать урожай.019

Для того, чтобы теперь найти сумму, нужно в первую очередь вычислить слагаемые, которыми здесь являются произведение и частное. На этом основании они становятся первоочередными действиями, а сложение — последним, заключительным действием, т. к. вычисляется искомая сумма.

Всё очень просто. Повторю. Т.к. невозможно вычислить сумму неизвестных чисел, записанных в виде неизвестного произведения и частного без нахождения произведения и частного, то это и является той незыблемой основой первоочередного выполнения умножения и деления, когда произведение и частное являются слагаемыми. А действие сложения в таких выражениях всегда является заключительным.

Некогда математики договорились, что для того, чтобы подобные выражения и формулы не пестрели трёхэтажными и выше скобками, не писать, а лишь подразумевать скобки для умножения и деления, т. к. произведения и частные, которые являются слагаемыми, всегда находятся в первую очередь, что всем (некогда было) ясно и без скобок (как «Волга впадает в Каспийское море»).img2 Ставь скобки или нет, всё равно сначала будешь делить и умножать, а потом складывать и вычитать. По этим же соображениям отказались брать в скобки возведение в степень, извлечение корня и ряд других действий, которые первоочерёднее умножения и деления, когда являются неизвестными множителями, делимыми и делителями, т. е. когда неизвестно значение корня или степени, без вычисления которых нельзя совершить умножение и деление.

Вот так надо понимать, почему умножение и деление «приоритетнее» сложения и вычитания. Первоочерёдность теперь обозначается нелепым словом «приоритетность», т. е. вы должны умножение и деление делать первыми потому, что они «приоритетнее» сложения! И самим не смешно, т. к. на деле выясняется, что умножения и деление — это вспомогательные действия, которые нужно сделать, чтобы найти сумму? Как раз сложение имеет настоящую важность. Если бы не нужно было находить сумму, то умножать/делить было бы не нужно. Будем считать, что поняли, почему умножение и деление «приоритетнее» сложения.ec2f87af728d45336ff02a7b2e7d9b2b Основу первоочерёдности умножения и деления нельзя изменить. Поэтому другие «приоритеты» будут ложными. Если вы знаете основу как смысл такой очерёдности, то плевать вы хотели и на правила и на тех, кто дурит вас при помощи своих «правилотворческих актов».

Слово «приоритетность» теперь все понимают как обозначение некой таинственной важности умножения и деления, из-за которой им присвоили более «высокий» «приоритет». Сложение и вычитание становятся как бы «ущербными» действиями, имея самый низкий «приоритет» в «табеле о рангах». Эмоциональная нагрузка заменяет смысловую. Чтобы избавиться от эмоций, надо просто заменить слово «приоритетность» на, скажем, «очерёдность» (первоочерёдность, равноочерёдность), чтобы мозг не буксовал. Или восстановить прежнюю терминологию (не помню, что использовалось вместо «приоритетности»).

Почему умножение и деление «равноприоритетны»

В примере решения задачи есть действия деления и умножения.img4 На этот случай имеется правило, что умножение и деление — равноприоритетны, т. е. их можно выполнять в произвольной последовательности.

Действительно, абсолютно неважно, какое из слагаемых вычисляется первым, какое — вторым, т. к. очерёдность вычислений слагаемых не влияет на сумму. Неважность очерёдности действий умножения и деления при вычислении слагаемых в выражении — это основа безочерёдности этих действий, что значит, произведения и частные в выражении можно вычислять в любом порядке, как удобно, не соблюдая правило «слева направо».

Понятно, что в выражении, где есть несколько слагаемых в виде произведений, частных, а также других действий, взятых в скобки, так же неважно для правильного ответа, в каком порядке вычислять слагаемые. Не обязательно начинать вычислять сначала все слагаемые в скобках, потом все частные и произведения, порядок — произвольный, как удобно. А также необязательно находить сразу все слагаемые, несмотря на «пониженную приоритетность» сложения/вычитания.img28 Пожалуйста, можете выполнять сложение по мере вычисления неизвестных слагаемых. Особенно это пригождается, когда решаешь конкретную задачу, в которых промежуточные суммы имеют определённое смысловое значение, т. е. являются ответами, на промежуточные вопросы задачи. Это позволяет быстрее найти ошибку в постановке вопроса, формулировке действия или в вычислении какого-либо параметра. Если же найти все слагаемые оптом, а потом сложить, то я даже не знаю, как потом найти ошибку. Тупое исполнение правил мешает осмысленно относится к задаче и превращает решение задачи в муторный процесс вычислений (благо, его облегчили калькуляторы) и не позволяет накопить опыт (который, «сын ошибок трудных», потому трудных, что требуют исправления, но тяжело в учении — легко в бою) их решения. Правила превращают мозг человека в калькулятор.

Почему «равноприоритетны» сложение и вычитание (на примере выражения без умножения и деления)

Т.к. вычитание есть сложение с отрицательными числами, и от перемены мест слагаемых сумма не изменяется, то вычитание и сложение могут проводиться в любой очерёдности, т.img20 к. это одно и то же действие. Такова основа безочерёдности выполнения действий сложения и вычитания, которую в псевдоматематическом новоязе назвали равной приоритетностью сложения и вычитания. Не может одно и то же действие быть «разноприоритетным», если уж на то пошло.

Например: 10+20-10 можно посчитать в таком порядке: 10+(20-10), в таком: -10+10+20, в таком: -10+20+10, в таком 10-10+20. Во всех случаях ответ будет одинаков — 20. Порядок вычисления не влияет на сумму, поэтому у действий сложения и вычитания — произвольная очерёдность, которую устанавливает тот, кто находит значение выражения.

Сложение и вычитание не имеет очерёдности согласно переместительному свойству сложения, поэтому правило «слева направо» выполнять необязательно.

Т. к. сложение — это увеличение количества, а вычитание — уменьшение, то ребёнок не может сразу понять, почему в реальности разные действия (сложение и вычитание) формально являются одним и тем же.90844b6e34352b5c9188377f3a020960 Поэтому самое главное, что ребёнку надо пояснить, почему разное — одинаково, так, чтобы, наоборот, не запутать его. Если он сам не поймёт, не увидит одинаковость с точки зрения именно арифметики, как бы условности исключительно для удобства счёта реальных вещей, то он просто зазубрит, мол, «что это одно и тоже», чего нельзя допускать, ибо он отчается понять, что повлечёт за собой цепь непониманий. Поэтому пояснять надо в своё время. Думаю, что одинаковость будет ясна в полной мере после понимания, что такое отрицательные числа как уяснения их назначения (практического использования) — «ниже нуля и выше нуля». До этого вычитание для ребёнка будет самостоятельным арифметическим действием, как он видит на практике, противоположностью сложения по результату. Поэтому детям сначала надо соблюдать правило «слева направо» в выражениях, где есть сложение и вычитание, чтобы получить правильный ответ. Но не делать правило догмой, а лишь подспорьем при неуверенности. Положительные слагаемые они могут складывать произвольно, они могут сложить все слагаемые, из которых потом вычитать все вычитаемые, чтобы убедиться, что сумма не меняется, и на наглядных практических примерах с теми же счётными палочками, понять — почему.img7 В примерах, подобных 10+20-10 они могут сначала выполнить вычитание, т. е. второе действие, или сначала от 10 — 10, и всё это можно воспроизвести на практике, с помощью тех же счётных палочек. Затем в выражения можно добавлять слагаемые/вычитаемые в виде неизвестных произведений и частных. После изучения отрицательных чисел и накопления опыта действий с ними они легко могут осознать тождественность вычитания и сложения как арифметического действия, убедившись в этом на практике.

назначение правила «слева направо»

Мы выяснили, что если в выражении два и более слагаемых, неважно, простых или сложных, то сложение (вычитание) данных и найденных слагаемых можно производить в любом порядке. Зачем же в таких выражениях бывает нужно применять очерёдность вычисления «слева направо»?

Иногда порядок нахождения суммы «слева направо» имеет смысл. Любое математическое, как арифметическое, так и алгебраическое, выражение определяется и составляется исходя из условий задачи.img4 Поэтому составление и запись выражения отражает логику решения данной задачи, последовательность ответов на предварительные вопросы, получив которые, человек может получить ответ, ради которого он решал задачу и даже ставил её. Поэтому каждый член выражения, являющийся количественной характеристикой, имеет и смысловое значение, отвечая на вопрос: «количество чего?» (только в абстрактных примерах этот вопрос не ставится, число имеет только величину, или «значение», и не имеет качественной, или смысловой, характеристики). Т. к. арифметические действия записываются в порядке осознания задачи и решения предварительных вопросов, то тем самым фиксируется смысловая нагрузка членов выражения, следовательно, фиксируется смысл действия — на какой вопрос будет получен ответ. Следовательно, очередность действий в порядке записи выражения («слева направо») позволяет решающему задачу человеку сохранять логику решения, последовательно отвечая на предварительные вопросы. Только для этой цели требуется соблюдать очерёдность «слева направо».img3 Но и в этом случае, уверенный в себе человек, хорошо понимающий смысл задачи, может не соблюдать этого правила, если ему удобно считать (ведь считать не означает — решать) в другой последовательности, как какой-либо абстрактный пример. Для этой же цели учащиеся осваивают способы «упрощения выражений» и свойства арифметических действий. Такой человек всегда может объяснить метод своего решения, как свои допущенные на время условности. Большинство людей уверенность путают с самоуверенностью, поэтому для страховки им лучше соблюдать очерёдность действий, чтобы не запутаться в задаче и не получить абсурд в виде «полтораземлекопа». В физике адекватность составленного выражения решению задачи проверяется размерностью.

Выше я уже показала, что произвольность в очерёдности (а также хоть «справа налево») не вредит вычислению ответа, когда находятся неизвестные произведения и частные.

В выражениях, где члены НЕ являются слагаемыми, например 8:2*4, нужно выполнять действия «слева направо».img29 И теперь уже не только ради сохранения смысла членов выражения, а потому, что другой порядок действий даст неправильный ответ. Правило «слева направо» придаёт строгую очерёдность «безочерёдным» делению и умножению. Почему?

Хотя умножение и деление имеют своими корнями сложение/вычитание, но в отличие от вычитания и сложения, они не являются одним и тем же действием. Умножение — это сложение одинаковых чисел, а деление — это разложение суммы на равные количественные доли. Как говорят — обратное действие. В данном примере 8 делится пополам. Одна часть = 4. Эта часть обратно складывается, но не 2 раза, чтобы опять получилась 8, а 4 раза, что в сумме даёт 16. Взаимосвязь, как обратимость, деления и умножения видна в примерах, где делитель равен множителю: 8:2*2=8. Мы разделили 8 на 2 части, потом часть сложили 2 раза, и получили 8. В общем, насчёт обратимости понятно: на сколько частей разобрали, столько и собрали. Не в этом дело. Но во взаимосвязь умножения и деления дети тоже должны вникнуть, выявить её на опыте (упражнениях), а не просто знать о ней, т.img2 к. без этого не смогут владеть этими инструментами математики в полной мере.

Из примера видно, что 8 является делимым, а 2 является делителем. Делитель, как теперь называется, это — «оператор действия», т.е. это то, что делит (на определённое его величиной количество частей). Поэтому 2 не может быть одновременно множителем (точнее — умножаемым) для 4. Не должно быть «или-или», т. е. двусмысленности назначения члена выражения. Множителем (умножаемым) для 4 (здесь 4 — оператор умножения) станет частное от деления 8 на 2, т. е. тоже 4. Следовательно, последовательность записи действий слева направо определяет так сказать статус каждого члена выражения: что есть делимое, делитель, множитель. А это не просто «статус», а так сказать, «положение обязывает». Делителю — делить, умножаемому — умножаться, множителю — умножать. Значит, в порядке записи обозначен порядок действий. Сама запись есть способ обозначения порядка действий. Способ, который устраняет неоднозначность, порождаемую безочерёдностью («равноприоритетностью») умножения и деления.001977 00b Это есть основание правила «слева направо». Менять этот порядок, например выполнять сначала умножение 2*4, значит — фактически решать не данный, а другой пример, в котором бывший делитель (2) становится множителем для 4, а полученное произведение — делителем 8. В первом случае мы находим произведение, во-втором, частное. Т.е. изменение порядка действий изменяет пример. Другой пример — другой ответ. Если же нам нужен именно «другой пример», то нет проблем — произведение 2*4 берётся в скобки: 8:(2*4), или знак деления заменяется на горизонтальную черту. В данном случае скобки «аннулируют» очерёдность «слева направо», т. к. меняют «статус» двойки с делителя, данный ему порядком записи, на умножаемое. Чтобы оно благополучно умножилось. В алгебраических выражениях, типа a:bc, чтобы обозначить делителем b, нужно делимое и делитель взять в скобки(а:b)c, или заменить знак деления на горизонтальный. Хотя проще всего в таких случаях поставить знак умножения между b*c. Точнее, при записи алгебраического выражения его просто не надо опускать.609642ec 03a8 4f6e b430 f64f606fb46f Но принято его опускать, поэтому скобки — в помощь.

***

Я разъяснила объективные основания «приоритетности» всех арифметических действий. Надеюсь теперь всем понятно, почему не может быть ни различных, ни других правил «приоритетности». Порядок действий не зависит от человека. От человека зависит лишь его формулировка в виде правил. При желании каждый может формулировать правила «своими словами», формулируя своё понимание очерёдности.

Повторю, что это отрывок, где я показываю смысл правил BODMAS/PEMDAS, т.к. без смысла они становятся догмой. Но весь сыр-бор разгорелся по причине того, что никто, включая решивших правильно, не понимает смысла опущенного перед скобками знака умножения. Опущенный знак умножения имеет назначение скобок, поэтому в «спорном примере» делителем 8 является произведение 2(2+2). Или, выражаясь на математическом новоязе, опущенный знак умножения делает действие умножения «приоритетнее» деления, т.к.img32 согласно правилам, действия в скобках первичны. В данном случае опущенный знак умножения меняет порядок вычисления «слева направо» на «справа налево», определяя делителем произведение. Постараюсь дописать текст, т.к. мне надо было понять, как вообще и почему мог произойти такой «спор». Для меня это как гром с ясного неба.


Телеграмм-канал для своих, не скопипащенных, постов: t.me/warrax_news

Правила знаков

Минус и плюс – это признаки отрицательных и положительных чисел в математике. Они по-разному взаимодействую с собой, поэтому при выполнении каких-либо действий с числами, например, деление, умножение, вычитание, сложение и т.д., необходимо учитывать правила знаков. Без этих правил вы никогда не сможете решить даже самую простую алгебраическую или геометрическую задачу. Без знания этих правил, вы не сможете изучить не только математику, но и физику, химию, биологию, и даже географию.

Рассмотрим подробней основные правила знаков.

Деление.

Если мы делим «плюс» на «минус», то получаем всегда «минус». Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс».

Умножение.

Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс».

Вычитание и сложение.

Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль – это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3.slide 6 В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше. Вот и выйдет -7+3 = -4. Можно сделать еще проще. Просто на первое место ставить положительное число, и выйдет 3-7 = -4, возможно кому-то так более понятно. Вычитание действуют полностью по такому же принципу.

Правила при умножении (делении) чисел

Множители
(делимое и делитель)
Результат
+ + +
+
+
+

Сначала умножить или сложить? Порядок обучения Правилам операций

Когда ученики 3-х классов и выше учатся складывать, вычитать, умножать, делить и работать с основными числовыми выражениями, они начинают с выполнения операций над двумя числами.bb1be383b5a3cc465bda0bf840d343b7b6 Но что происходит, когда выражение требует нескольких операций? Например, вы сначала складываете или умножаете? А как насчет умножения или деления? В этой статье объясняется, в каком порядке выполняются операции, и приводятся примеры, которые вы также можете использовать со студентами.Он также содержит два урока, которые помогут вам представить и развить концепцию.

Стандарт ключа:

  • Выполнять арифметические операции, включая сложение, вычитание, умножение и деление в обычном порядке, независимо от того, есть ли скобки или нет. (3 класс)

Порядок операций — пример математики, которая очень процедурна. Легко ошибиться, потому что это не столько концепция, которую вы усвоили, сколько список правил, которые вам нужно запомнить.Но не обманывайтесь, думая, что процедурные навыки не могут быть глубокими! Он может представлять сложные проблемы, подходящие для старших школьников и созревший для обсуждения в классе:

  • Меняется ли правило слева направо, когда умножение подразумевается, а не прописано? (Например, (3g ) или (8 (12) ) вместо (3 times g ) или (8 cdot 12 ).31 vnetablichnye umnozhenie i delenie )
  • Где факториал попадает в порядок операции?
  • Что произойдет, если вы возведете показатель степени в другой показатель, но скобок нет? (Обратите внимание, что этот урок не включает экспоненты, хотя, если учащиеся готовы, вы можете расширить свой урок, включив их.)

Что первично в порядке работы?

Со временем математики согласовали набор правил, называемый порядком операций , чтобы определить, какую операцию выполнить в первую очередь. Когда выражение включает только четыре основных операции, вот правила:

  1. Умножайте и делите слева направо.
  2. Сложить и вычесть слева направо.

При упрощении выражения, такого как (12 div 4 + 5 times 3-6 ), сначала вычислите (12 div 4 ), поскольку порядок операций требует сначала оценки любого умножения и деления (в зависимости от того, что произойдет первый) слева направо перед вычислением сложения или вычитания.В данном случае это означает сначала вычисление (12 div 4 ), а затем (5 times 3 ).cdhmUGyasFc После того, как все умножение и деление будут завершены, продолжайте, добавляя или вычитая (в зависимости от того, что наступит раньше) слева направо. Шаги показаны ниже.

(12 div 4 + 5 times 3-6 )
(3 + 5 times 3-6 ) Потому что (12 div 4 = 3 )
(3 + 15-6 ) Потому что (5 times 3 = 15 )
(18-6 ) Потому что (3 + 15 = 18 )
(12 ) Потому что (18-6 = 12 )

Рассмотрим в качестве примера другое выражение:

(6 + 4 times 7-3 )
(6 + 28-3 ) Потому что (4 times 7 = 28 ), что выполняется первым, потому что умножение и деление оцениваются в первую очередь.
(34-3 ) Потому что (6 + 28 = 34 )
(31 ) Потому что (34-3 = 1 )

Иногда мы можем захотеть убедиться, что сначала выполняется сложение или вычитание. Группирование символов , таких как круглых скобок (() ), скобок ([] ) или фигурных скобок ( {} ), позволяет нам определить порядок, в котором выполняются определенные операции. выполнено.

Порядок операций требует, чтобы операции внутри символов группировки выполнялись перед операциями вне их.Например, предположим, что выражение 6 + 4 заключено в круглые скобки:

((6 + 4) times 7-3 )
(10 ​​ times 7-3 ) Потому что (6 + 4 = 10 ), что и делается во-первых, потому что он заключен в круглые скобки.
(70 — 3 ) Потому что (10 ​​ times 7 = 70 ), и скобок больше нет.
(67 ) Потому что (70 — 3 = 67 )

Обратите внимание, что выражение имеет совершенно другое значение! Что, если вместо этого мы заключим (7 — 3 ) в круглые скобки?

(6 + 4 times (7-3) )
(6 + 4 times 4 ) На этот раз (7-3 ) находится в скобках, так что мы делаем это в первую очередь.
(6 + 16 ) Поскольку (4 times 4 = 16 ) и когда скобок не осталось, мы продолжаем умножение перед сложением.
(22 ) Потому что (6 + 16 = 22 )

Этот набор скобок дает еще один ответ. Итак, когда используются круглые скобки, правила порядка операций следующие:

  1. Выполнять операции в скобках или группировать символы.
  2. Умножайте и делите слева направо.
  3. Сложить и вычесть слева направо.

Что такое PEMDAS? — Определение, правила и примеры — Видео и стенограмма урока

Почему важна PEMDAS?

Без PEMDAS нет указаний для получения только одного правильного ответа. В качестве очень простого примера, чтобы вычислить 2 * 4 + 7, я мог бы сначала умножить, а затем сложить, чтобы получить 15. У меня также есть возможность сначала сложить, а затем умножить и получить 22. Какой ответ правильный? Используя PEMDAS, единственный правильный ответ — 15, потому что порядок букв в PEMDAS говорит мне, что умножение M должно выполняться перед сложением A.

Вот объяснение правил, приведенных в PEMDAS:

  1. P, поскольку первая буква означает, что вы сначала выполняете любые вычисления в группировке символов.
  2. Затем найдите показатели степени, E. Игнорируйте любые другие операции и возьмите любые числа с показателями степени в соответствующие степени.
  3. Несмотря на то, что M для умножения в PEMDAS предшествует D для деления, эти две операции фактически имеют одинаковый приоритет. Выполняйте только эти две операции в порядке их следования слева направо.2) + 10
    • 36 — 2 (20 + 12/4 * 3-4) + 10
      • 36 — 2 (20 + 3 * 3-4) + 10
  4. Игнорируя сложение и вычитание, я завершаю следующую операцию умножения.

    Наконец, я складываю и вычитаю слева направо.

    Если вы столкнулись с вычислением с одним выражением, сгруппированным внутри другой группировки, начните с самого внутреннего сгруппированного выражения и работайте вовне, используя PEMDAS. 2} + 12/4.3 |, шаги будут следующими:

    Краткое содержание урока

    PEMDAS — это аббревиатура слов скобка, показатель степени, умножение, деление, сложение, вычитание. Для любого выражения сначала следует упростить все показатели, затем умножить и разделить слева направо и, наконец, сложить и вычесть слева направо. Слово «круглые скобки» стоит первым в этом аббревиатуре, чтобы указать, что любое выражение в символе группировки, такое как круглые скобки, должно быть сначала упрощено.Этот приказ также можно запомнить, используя фразу «Прошу прощения, моя дорогая тетя Салли».

    Результаты обучения

    Изучив этот урок на PEMDAS, откройте для себя свои способности:

  • Осознайте важность PEMDAS и произнесите фразу, которая поможет вам запомнить порядок действий
  • Использование PEMDAS в математических выражениях
  • Понять, как PEMDAS применяется к выражениям дробей и абсолютных значений

Что такое порядок операций?

Что такое порядок действий?

В математике порядок операций — это правила, которые устанавливают последовательность, в которой должны выполняться несколько операций в выражении.

Способ запоминания порядка операций — PEMDAS, где каждая буква обозначает математическую операцию.

п. Круглые скобки
E Показатель
M Умножение
D Дивизион
А Дополнение
S Вычитание

Правила PEMDAS, устанавливающие порядок, в котором должны выполняться операции в выражении, следующие:

1. Круглые скобки — они имеют приоритет над всеми другими операторами. Первый шаг — выполнить все операции в скобках. Проработайте все группировки изнутри наружу. (Все, что указано в скобках, является группировкой)

2. Экспоненты — Найдите все экспоненциальные выражения.

3. Умножение и деление — Затем, двигаясь слева направо, умножайте и / или делите в зависимости от того, что наступит раньше.
4. Сложение и вычитание — Наконец, двигаясь слева направо, складывайте и / или вычитайте, в зависимости от того, что наступит раньше.

Зачем нужно соблюдать порядок действий?

Следуйте правилам порядка операций для решения выражений, чтобы все пришли к одному и тому же ответу.

Вот пример того, как мы можем получить разные ответы, если НЕ соблюдаем правильный порядок операций.

Выражение решено слева направо Выражение решено с использованием порядка операций (PEMDAS)

6 х 3 + 4 х (9 ÷ 3)

6 х 3 + 4 х (9 ÷ 3)

18 + 4 х (9 ÷ 3)

22 х (9 ÷ 3)

198 ÷ 3

= 66 ✘

6 х 3 + 4 х (9 ÷ 3)

6 X 3 + 4 x (9 ÷ 3) P

6 X 3 + 4 x 3 → М

18 + 4 x 3 → М

18 + 12 → А

= 30 ✔

Интересные факты

  • Популярная мнемоника, используемая для запоминания порядка действий. ПЕМДАС — это «Прошу прощения, моя дорогая тетя Салли».

Давайте споем!

На самом деле все дело в операциях,

Решайте по порядку, иначе будет напряженность.

Начните с открытия скобок.

Прыгайте с экспонентами.

Куб или Квадрат — это все очень честно!

Далее, Умножение или Разделение — переход слева направо.

Сложение и вычитание идут последними, но они просты.

наконец, это так просто, как A B C D!

Давайте сделаем это!

Вместо того, чтобы раздавать ребенку рабочие листы, составляйте словесные задачи из реальных жизненных ситуаций. Это поможет им писать и решать выражения, а также использовать порядок операций для упрощения выражений в предалгебре и алгебре.

Например, возьмите ребенка за покупками. Попросите их выбрать 2 дюжины яиц, 3 пакета булочек для хот-догов, 2 пакета конфет и 2 коробки хлопьев.Затем попросите их положить обратно одну коробку хлопьев. Теперь спросите у ребенка количество яиц в дюжине, количество булочек в пачке, количество конфет в пачке и подсчитайте общее количество купленных предметов. Попросите их составить выражение и использовать порядок действий, чтобы найти ответ.

Сопутствующий математический словарь

Правило PEMDAS — Что такое Правило PEMDAS? Определение, примеры

В математике PEMDAS — это аббревиатура, используемая для обозначения порядка операций, которым необходимо следовать при решении выражений, содержащих несколько операций.PEMDAS означает P- круглые скобки, E- экспоненты, M- умножение, D- деление, A- сложение и S- вычитание. В разных странах используются разные аббревиатуры для обозначения порядка операций. Например, в Канаде порядок операций указан как BEDMAS (скобки, экспоненты, деление, умножение, сложение и вычитание). Некоторые люди предпочитают говорить BODMAS (B- скобки, O- порядок или выключено), в то время как немногие другие называют это GEMDAS (G-группировка).

В этом уроке вы узнаете о правиле PEMDAS для решения арифметических выражений с последующими решенными примерами и практическими вопросами.

PEMDAS или порядок операций — это набор правил для выполнения операций в арифметическом выражении. Существуют разные сценарии, в которых все проходит через различные этапы в фиксированной последовательности. Рассмотрим следующий сценарий. Рон и Рэйвен посетили фабрику игрушек. Они оба наблюдали за производством игрушек на фабрике. Сначала конструируют игрушки. Далее их собирают и упаковывают в коробки. Наконец, они проверяются на качество перед отправкой в ​​магазины. Все сделано в установленном порядке.

Аналогичным образом арифметические операции выполняются упорядоченным образом. Давайте узнаем порядок операций по математике. Найти ответ на математические операции довольно просто, если задействован только один оператор. Что делать, если задействовано несколько операторов? Это могло быть немного сложнее! Посмотрим как.

Рон и Рэйвен отдельно решили математическое выражение 5 + 2 × 3. Вот как они это решили.

Метод Рона Метод Ворона

5 + 2 × 3

= 7 × 3

= 21

5 + 2 × 3

= 5 + 6

= 11

Как видите, Рон и Рэйвен получили разные ответы.На это выражение в математике может быть только один правильный ответ! Вы можете решить, кто прав?

Не волнуйтесь! PEMDAS поможет вам найти правильный ответ.

Что такое PEMDAS?

PEMDAS — это порядок операций, используемый в математике для упрощения сложных вычислений. В нем говорится, что мы начинаем решать любое арифметическое выражение, решая члены, записанные в скобках или скобках, а затем упрощаем экспоненциальные члены и переходим к операциям умножения и деления, а затем, наконец, мы можем найти ответ, решая операции сложения и вычитания.

Определение PEMDAS

PEMDAS — это набор правил, которым следуют при решении математических выражений. Эти правила начинаются с скобок , а затем операции выполняются с экспонентами или степенями. Далее выполняем операции умножения или деления слева направо. Наконец, операции сложения или вычитания выполняются слева направо.

п. [{()}] Круглые скобки
E х 2 Экспоненты

м

D

×

ИЛИ

÷

Умножение

ИЛИ

Дивизия

А

S

+

ИЛИ

Дополнение

ИЛИ

Вычитание

Если вы будете придерживаться этого порядка операций в правиле PEMDAS, вы всегда получите правильный ответ.Следующая аббревиатура поможет вам запомнить Правило PEMDAS.

P аренда E xcuse M y D ухо A Unt S союзник

Давайте разберемся с PEMDAS на примере.

BODMAS против PEMDAS

Правило PEMDAS аналогично правилу BODMAS . Существует различие в сокращении, потому что определенные термины известны под разными именами в разных местах.

Когда использовать PEMDAS?

Когда в математическом выражении более одной операции, мы используем метод PEMDAS. PEMDAS в математике дает вам правильную структуру для получения уникального ответа для каждого математического выражения. При использовании метода PEMDAS необходимо соблюдать последовательность определенных правил. Как только вы освоите эти правила, вы сможете выполнять сразу несколько шагов.

Что следует помнить

  • Операции, указанные в скобках, должны быть выполнены в первую очередь.
  • Затем решите степень в выражении.
  • Двигайтесь слева направо и выполняйте умножение или деление, в зависимости от того, что наступит раньше.
  • Двигайтесь слева направо и выполняйте сложение или вычитание, в зависимости от того, что наступит раньше.

Распространенные ошибки при использовании правила PEMDAS в математике

Наличие нескольких скобок обычно вызывает путаницу. Если мы не знаем, какую скобку решить в первую очередь, это может привести к неправильному ответу.Теперь мы узнаем, как решить это выражение с помощью нескольких скобок.

4 + 3 [8-2 (6-3)] ÷ 2

Начнем с внутренней стороны скоб. Сначала мы решим самую внутреннюю скобку, а затем двинемся наружу.

  • Начиная с 6 — 3 = 3, получаем: 4 + 3 [8 — 2 (3)] ÷ 2
  • Далее, умножая 2 (3) = 6 или 2 × 3 = 6, получаем: 4 + 3 [8 — 6] ÷ 2
  • Осталась одна скобка, [8 — 6] = 2, получаем: 4 + 3 [2] ÷ 2
  • Решая 3 [2] или 3 × 2 = 6, получаем: 4 + 6 ÷ 2

Мы видим, что все выражения в скобках решены.Основываясь на PEMDAS, мы знаем, что дальше идет деление, следовательно, 6 ÷ 2 = 3, то есть 4 + 3. И, наконец, сложение 4 + 3 = 7.

Разъяснение правила PEMDAS! (Примеры включены) — Mashup Math

P: Круглые скобки

E: Экспоненты

M: Умножение

D: Деление

A: Сложение

S = Вычитание

Операции, включенные в правило PEMDAS, выполняются слева направо.

Кроме того, правило PEMDAS для вызова математического порядка операций имеет несколько важных подправил, которые также необходимо соблюдать, если вы хотите правильно использовать PEMDAS (и получать правильные ответы на математические задачи).Эти важные подправила относятся к отношениям между умножением / делением и сложением / вычитанием.

Эти важные подправила правила PEMDAS подробно объясняются в следующем разделе:

Правило PEMDAS: ключевые моменты

Правило PEMDAS существует уже несколько десятилетий как инструмент, помогающий учащимся запомнить математический порядок операций. . Многие предпочитают просто запоминать мнемоническое слово PEMDAS (произносится как PEM-DAHS), в то время как другие предпочитают запоминать фразу Пожалуйста, извините мою дорогую тетю Салли.

Однако вы решили помнить, что правило PEMDAS не так важно, как запоминание ранее упомянутых подправил? Почему так важны подправила правила PEMDAS? Потому что вспомогательные правила часто определяют разницу между получением правильного или неправильного ответа на математическую задачу.

Правило PEMDAS может быть несовершенным, но если вы помните вспомогательные правила, оно может быть полезным инструментом, помогающим вам правильно применять математический порядок операций и получать правильные ответы как на простые, так и на сложные математические задачи при условии, что вы знаете важные подправила .

Важные подправила правила PEMDAS:

1.) P: Выполните операции внутри скобок или групп, прежде чем делать что-либо еще (если нет групп или скобок, вы можете пропустить этот шаг) .

2.) E: Затем, после выполнения операций внутри скобок и группировок (если они есть), примените любые экспоненты (если нет показателей, вы можете пропустить этот шаг).

3.) M / D: Затем, после скобок, групп и экспонент, выполните умножение / деление слева направо в зависимости от того, какая операция будет первой).

★ Тот факт, что M стоит перед D в правиле PEMDAS, не означает, что вы всегда будете выполнять умножение перед делением.

4.) A / S: Наконец, после умножения и / или деления выполните сложение / вычитание слева направо в зависимости от того, какая операция будет первой).

★ То, что A стоит перед S в правиле PEMDAS, не означает, что вы всегда будете выполнять сложение перед вычитанием

= Чрезвычайно важно

арифметических операций — можете ли вы опровергнуть это правило PEDMSA? — (деление перед умножением, вычитание перед сложением)

Чтобы расширить ответ Losethegame

Losethegame ответил: «Я получил этот же вопрос в Google, хотя я не уверен, что (м) кто-либо из комментаторов ответил на него конкретно.Думаю, вы правы в том, что ваше правило нельзя нарушать. Вероятно, это можно доказать алгебраически, потому что a * (b / c) = (a / c) * b и a + (b-c) = (a-c) + b …? «

Я согласен, что это, вероятно, может быть доказано алгебраически с помощью методов, подобных тому, о котором упоминает losethegame (хотя пример losethegame может быть ошибочным, поскольку, как указывает user21280, losethegame меняет местами операнды). Но, развивая идею алгебраического доказательства (и без перестановки операндов!), Я могу придумать некоторую алгебру, которая могла бы это доказать.(Aand предоставил user21280 считает, что мои примеры не учитывают все возможности. Его ответ с использованием логических формул мог бы).

Дано уравнение, в котором умножение идет текстуально перед делением, например 3 * 4/2 неважно, что вы сделаете в первую очередь. Так что буквальные PEMDAS или PEDMAS подойдут. Принимая во внимание уравнение, в котором деление происходит в текстовом виде перед умножением, например 6/2 * 3 то имеет значение, что вы делаете в первую очередь. Традиционное прочтение PEMDAS или PEDMAS дает это правильно (потому что они говорят, что сначала делайте первый, и это разделение), буквальное PEDMSA дает это правильно.Буквальное прочтение PEMDAS ошибочно.

Вычитание и раздел этой собственности. Допустим, мы составили небольшое уравнение той части уравнения, в которой операторы конкурируют друг с другом. Если вычитание конкурирует с сложением и вычитание происходит первым (текстуально, в уравнении), оно должно быть выполнено первым. Если деление соперничает с умножением, и деление идет первым, деление должно быть выполнено первым. В то время как если бы сложение конкурировало с вычитанием, то независимо от того, происходит оно первым или нет, не имеет значения, выполняется ли сначала сложение или вычитание.Точно так же, если умножение конкурирует с делением, если умножение происходит сначала в текстовом виде, тогда не имеет значения, выполняется ли сначала деление или сначала выполняется умножение. Таким образом, литерал PEDMSA всегда работает (т.е. строго выполняет деление перед умножением, вычитание перед сложением). Как и традиционное / правильное чтение PEMDAS / PEDMAS, то есть чтение, в котором говорится, что умножение и деление имеют равный приоритет и сначала выполняют первое, аналогично сложению и вычитанию.

Так, например,

Принимая 1 * 2/3 , поэтому a * b / c
Следуя PEDMSA буквально дает 1 * (2/3) , поэтому a (b / c) После PEDMSA традиционно получается (1 * 2) / 3 , поэтому (ab) / c

И мы знаем алгебраически, что a (b / c) = (ab) / c

  1 * 2/3 а * б / с
знак равно
1 * 2/3 ab / c
  

Принимая 1/2 * 3 , поэтому a / b * c Это оценивается одинаково независимо от того, следует ли строго упорядоченному PEDMSA или традиционному PEMDAS i.е. Независимо от того, делаете ли вы сначала деление, как правило, или сначала выполняете умножение и деление, это (a / b) * c в обоих случаях, очевидно, одно и то же.

  1/2 * 3 (а / б) * в
знак равно
1/2 * 3 (а / б) * в
  

С 1 + 2-3 , если мы выполним a + b-c , который заказан PEDMSA, то есть a + (b-c) , это будет тот же результат, что и при использовании традиционного PEMDAS (a + b) -c. Мы знаем алгебраически a + (b-c) = a + b-c = (a + b) -c

Я вспоминаю, как мой учитель математики указывал на одну вещь, о которой вы хотите остерегаться / знать, — это - (a + b) , который мы просверлили, был -a-b сильно отличается от -a + b .Вычитания всегда должны выполняться в первую очередь и по порядку … и если сначала выполняется вычитание или сначала первое из сложения и вычитания, то мы поддерживаем это правило.

  1 + 2-3 a + (b-c)
знак равно
1 + 2-3 (а + б) -с
  

И для этого то же самое. алгебраически

  1-2 + 3 (1-2) +3 (а-б) + в
знак равно
1-2 + 3 (1-2) +3 (а-б) + в
  

И я полагаю, наконец. 1-2-3 и 1/2/3 И независимо от того, выполняете ли строго заказанный PEDMSA или традиционный PEMDAS, это (1-2) -c и (1/2) / 3 так же там.

Я не уверен, все ли это возможности.

Это может оставить вопрос о том, что объясняет алгебру, например правило, что

  a * (b / c) = (ab) / c

а также

а + (b-c) = (a + b) -c
  

Также это соглашение о синтаксическом анализе, которое, кажется, разработано в конце 20-го века, а не фундаментальное правило математики. https://www.quora.com/Is-the-order-of-operations-unclear-for-expressions-like-20-2-5+5

Математическое уравнение, которое попыталось поставить в тупик Интернет


Прочтите статью Стивена Строгаца о математике в The Times


Чтобы помочь учащимся в США запомнить этот порядок операций, учителя вставляют в них аббревиатуру PEMDAS: скобки, показатели, умножение, деление, сложение, вычитание.Другие учителя используют эквивалентную аббревиатуру BODMAS: скобки, порядки, деление и умножение, а также сложение и вычитание. Третьи советуют своим ученикам запомнить маленькую частушку: «Прошу прощения, моя дорогая тетя Салли».

[ Эта математическая задача — не первый раз, когда Интернет раскололся. Помните Янни и Лорел? Как насчет цвет этого платья ? ]

А теперь поймите, что следование за тетей Салли — это чисто условный вопрос.В этом смысле PEMDAS произвольна. Более того, по моему опыту математика, выражения вроде 8 ÷ 2 × 4 выглядят абсурдно надуманными. Ни один профессиональный математик никогда не написал бы что-то столь явно неоднозначное. Мы бы вставили круглые скобки, чтобы обозначить наше значение и указать, следует ли сначала выполнить деление или умножение.

В последний раз, когда это появилось в Твиттере, я отреагировал возмущенно: казалось смешным, что мы тратим так много времени в нашей школьной программе на такую ​​софизму.Но теперь, будучи просветленным некоторыми из моих компьютерных друзей в Твиттере, я пришел к пониманию того, что условности важны и от них могут зависеть жизни. Мы знаем это всякий раз, когда выезжаем на шоссе. Если все остальные едут по правой стороне дороги (как в США), вам будет разумно последовать их примеру. То же самое, если все остальные едут слева, как в Соединенном Королевстве. Неважно, какая конвенция принята, если все ее соблюдают.

Точно так же важно, чтобы каждый, кто пишет программное обеспечение для компьютеров, электронных таблиц и калькуляторов, знал правила порядка операций и следовал им.Для остальных из нас сложности PEMDAS менее важны, чем более крупный урок о том, что условности имеют свое место. Это двойная желтая линия по центру дороги — бесконечный знак равенства — и общее соглашение о понимании друг друга, совместной работе и избежании лобовых столкновений. В конечном счете, 8 ÷ 2 (2 + 2) — это не столько утверждение, сколько кирпичная кладка; это все равно, что написать фразу «ест побеги и листья» и прийти к выводу, что язык капризен. Ну да, при отсутствии знаков препинания это так; вот почему мы изобрели этот материал.

Разгорелся сыр бор как пишется


2

3 ответа:

Разгорелся сыр бор как пишется



2



0

Просторечное устойчивое сочетание, о котором Вы спрашиваете, правильно писать через дефис, то есть, в соответствии с первым предположенным Вами вариантом: «сыр-бор». Так в словарях это выражение и пишется.

Разгорелся сыр бор как пишется



1



0

Слово «сыр-бор» пишется через дефис. Это устойчивое выражение или, правильно сказать, словосочетание. Оно появилось благодаря фразеологизму «Загорелся сыр-бор из-за сосенки«. Сыр — это не продукт питания, а сокращенная форма слова «сырой». Горение сырого бора стало олицетворением сильных гневных эмоций (даже сырой бор загорелся). В результате сокращения этого выражения появилось слово «сыр-бор». Дефис тут влез сюда по ошибки, но слово приобрело определенный неизменяемый вид. Поэтому написание его просто надо запомнить.

Разгорелся сыр бор как пишется



1



0

Правильное написание будет «сыр-бор» через дефис. Означает данная фраза возникновение какого-либо яростного спора, суматохи.

Происхождение фразеологизм «сыр-бор разгорелся» ведётся от фразы «от искры сыр-бор загорелся». Иными словами, из-за некоторой мелочи возникла большая, крупная неприятность.

Сокращение «сыр-» происходит от прилагательного «сырой», т.е. влажный, а бором исторически называют сосновый лес.

Разгорелся сыр бор как пишется

Читайте также

Разгорелся сыр бор как пишется

Правильное написание этого слова — стоишь.

У глаголов в конце шипящих всегда пишется мягкий знак (например: едешь, пишешь.)

В этом слове: 2 гласные буквы, 3 согласные, 1 беззвучная буква.

Всего 6 букв, 2 слога.

Разгорелся сыр бор как пишется

В вопросе не указаны слова с элементом «сверх-«, значит, мы имеем полное право говорить о трёх вариантах его определения:

  • приставка, словообразующая морфема, напр., сверх/скоростной, сверх/плотность,
  • сочетание приставки «с-» с корнем «-верх-«, основа слова, напр., с/верх/у (наречие),
  • предлог, служебная часть речи, употребляется с родит. падежом, напр., сверх задания/нормы.

Разгорелся сыр бор как пишется

У меня встречный вопрос: а зачем спрашивать? Расфасованные по лоткам яйца лежат в супермаркете, смысл которого именно в том, чтобы заполнять тележку самому. Если Вы пришли на рынок, то сами решаете, сколько яиц Вы купите, то число и называйте. Привыкли покупать яйца десятками, требуйте десяток, а если Вам ближе по душе число 9, то есть прекрасное слово «девятка», которым можно назвать и яйца.

Жизнь не заставляет изобретать слово «девяток», это придуманная проблема. Дескать, неудобно так говорить, давайте вернёмся на прежнюю расфасовку по 10, потому что для неё слово в языке имеется. До революции вообще всё считали дюжинами (по 12). Каково было человеку, привыкшему к полдюжине яиц, переходить на десяток! Однако научились и привыкли.

Если яйца уже разложены по лоткам, то просите лоток, и если есть необходимость уточнить, какой именно, всегда можно сказать просто по-русски: девять яиц.

Разгорелся сыр бор как пишется

Думаю, что нужно провести параллель с другими словами.

Например, «дверь автобуса» или «двери автобусов»?

Дверь в автобусе может быть одна, и тогда мы скажем «дверь автобуса», то есть что? — дверь, дверь чья? — автобуса.

А если дверей много, то есть автобус имеет много дверей? Тогда логично заключить, что каждая дверь принадлежит этому конкретному автобусу, поэтому мы говорим «двери автобуса», а не «двери автобусов».

Теперь с орангутанами.

Самца можно назвать «самец-орангутан», но также можно и «самец орангутана». То есть самец принадлежит к виду орангутанов. И все самцы тоже принадлежат к одному виду орангутанов. Как двери в автобусе принадлежат одному автобусу, так и самцы вида орангутанов принадлежат к одному виду «орангутан».

Поэтому мне представляется логичным говорить «самцы орангутана», а не «самцы орангутанов».

Если бы в нашем примере с дверями было бы много автобусов, и мы вели бы речь о дверях на разных автобусах, то можно говорить «двери автобусов».

Если бы видов орангутанов было несколько, то точно так же можно было бы сказать «самцы орангутанов», то есть они принадлежат к разным видам орангутанов. Но вид орангутанов только один — «орангутаны», поэтому в данном случае нужно всегда говорить «самцы орангутана», то есть самцы, принадлежащие к этому одному виду.

Разгорелся сыр бор как пишется

В русском языке немалое количество слов, оканчивающихся на -ОД.

Среди них много сложных существительных, то есть, состоящих из двух слов (корней).

А:

  • анОд
  • антипОд

Б:

  • брОд
  • бутербрОд

В:

  • вЫвод
  • взвОд
  • всхОд
  • восхОд
  • вездехОд
  • водорОд
  • водопровОд
  • водоотвОд
  • вхОд
  • вЫход
  • ввОд
  • велозавОд

Г:

  • гОлод
  • гОрод
  • газопровОд
  • гОд
  • громоотвОд
  • голубевОд

Д:

  • дохОд
  • дОвод
  • дымохОд
  • дымоотвОд
  • диОд

Ж:

  • животновОд

З:

  • завОд
  • захОд
  • зверовОд

Й:

  • йОд

К:

  • кОд
  • кислорОд
  • коневОд
  • комОд
  • корнеплОд
  • кукловОд

Л:

  • лунохОд
  • ледохОд
  • лесозавОд
  • луговОд

М:

  • марсохОд
  • морехОд
  • маслозавОд
  • молокозавОд
  • мусоропровОд
  • мЕтод

Н:

  • нарОд
  • нЕвод
  • небосвОд

О:

  • обихОд
  • Обод
  • обхОд
  • огорОд
  • овцевОд
  • оленевОд
  • Овод
  • овощевОд

П:

  • перевЕд
  • перИод
  • подхОд
  • прОвод
  • прихОд
  • похОд
  • плОд
  • птицевОд
  • прихОд
  • прохОд
  • перехОд
  • прИгород
  • путепровОд
  • пчеловОд
  • пищевОд
  • пОвод

Р:

  • расхОд
  • развОд
  • рыбозавОд
  • рыбовОд
  • рОд
  • растениевОд

С:

  • садовОд
  • синОд
  • счетовОд
  • собаковОд
  • снегохОд
  • судохОд
  • сОлод
  • скотовОд
  • свОд
  • световОд
  • свиновОд
  • самоотвОд
  • самохОд

Т:

  • турпохОд
  • трубопровОд
  • тихохОд
  • теплохОд

У:

  • ухОд
  • углевОд
  • углерОд
  • углеводорОд
  • удОд

Х:

  • хОлод
  • хоровОд
  • хОд
  • хлебозавОд

Ц:

  • цветовОд

Э:

  • эпизОд
  • электропровОд
  • электрОд
  • электрозавОд
  • экскурсовОд.


Adblock
detector